Underlying Pathophysiological Mechanisms of Cardiovascular-Kidney Metabolic Syndrome | MECHANISM | MEDIATOR | End-organ Outcom HEART | KIDNEY | |--|---|---|--| | Increased central venous
and intra-abdominal
pressures | Increased salt/water retentionActivation of RAAS/SNS | Acute/chronic HFAdverse remodeling of heart
and lungs | Renal venous congestionReduced GFR | | Reduced cardiac output
and cardiac index | Peripheral vasodilation/
reduced vascular resistance Reduced perfusion pressure | Activation of RAAS/SNS
detrimental to heart Cardiac ischemia from
reduced perfusion | Reduced renal perfusionRenal ischemia | | Neurohormonal dysregulation RAAS activation SNS activation Adenosine/AVP | Impaired baroreceptor reflexes Increased renin secretion Increased Ang II secretion Increased aldosterone secretion Increased ET-1 expression Oxidative stress | Myocyte hypertrophy, left
ventricular dysfunction Proinflammation, profibrotic
effect Hypertension | Arteriolar vasoconstriction Reduced GFR Enhanced reabsorption of sodium/water Proinflammation, profibrotic effect | | Oxidative stress | Increased reactive oxygen
species formation Ang II-enhanced NADPH-
oxidase activity Uremic toxin-mediated
cytokine release | Left ventricular hypertrophy Accelerated atherosclerosis Endothelial dysfunction Inflammation Fibrosis | Endothelial dysfunction Accelerated
atherosclerosis Inflammation Interstitial fibrosis | | Inflammatory mediators | TNF-aTWEAKMembers of IL-1 familyIL-6CRP | Atherosclerosis Inflammation Left ventricular dysfunction Cardiac hypertrophy Myocardial cell death Fibrosis | InflammationFibrosisAtherosclerosisGlomerular damage by
mesangial cell apoptosis | | Renal failure-disturbances | PBUTs (indoxyl sulfate, p-cresyl sulfate) Chronic inflammatory cytokines Oxidative stress FGF-23 Calcium/phosphate-mediated inflammation Anemia | Endothelial dysfunction Atherosclerosis Left ventricular dysfunction Cardiac hypertrophy | Atherosclerosis Inflammation Increased interstitial and perivascular fibrosis | Table adapted from Kumar, et al. 2019.